
PSTricks:

PostScript macros for Generic TeX.

Dripping Faucet

M

m

g

Mathematical Model for
a Dripping Faucet

le
e

c
h

e
n

g

User’s Guide

Timothy Van Zandt

12 March 1993
Version 0.93a

Author’s address:

Department of Economics, Princeton University,

Princeton, NJ 08544-1021, USA. Internet: tvz@Princeton.EDU

Contents

Welcome to PSTricks 1

Part I The Essentials 3

1 Arguments and delimiters 3

2 Color 4

3 Setting graphics parameters 5

4 Dimensions, coordinates and angles 7

5 Basic graphics parameters 8

Part II Basic graphics objects 10

6 Lines and polygons 10

7 Arcs, circles and ellipses 11

8 Curves 13

9 Dots 15

10 Grids 17

11 Plots 19

Part III More graphics parameters 24

12 Coordinate systems 24

13 Line styles 24

14 Fill styles 27

15 Arrowheads and such 28

16 Custom styles 31

Part IV Custom graphics 32

17 The basics 32

18 Parameters 32

19 Graphics objects 33

Table of contents 1

20 Safe tricks 36

21 Pretty safe tricks 39

22 For hackers only 39

Part V Picture Tools 41

23 Pictures 41

24 Placing and rotating whatever 42

25 Repetition 46

26 Axes 47

Part VI Text Tricks 52

27 Framed boxes 52

28 Clipping 54

29 Rotation and scaling boxes 55

Part VII Nodes and Node Connections 58

30 Nodes 59

31 Node connections 60

32 Attaching labels to node connections 66

Part VIIISpecial Tricks 70

33 Coils and zigzags 70

34 Special coordinates 71

35 Overlays 73

36 The gradient fill style 74

37 Adding color to tables 75

38 Typesetting text along a path 76

39 Stroking and filling character paths 77

40 Importing EPS files 78

Table of contents 2

41 Exporting EPS files 79

Help 82

A Boxes 82

B Tips and More Tricks 85

C Including PostScript code 86

D Troubleshooting 87

Table of contents 3

Welcome to PSTricks

PSTricks is a collection of PostScript-based TEX macros that is com-

patible with most TEX macro packages, including Plain TEX, LaTEX,

AMSTEX, and AMS-LaTEX. PSTricks gives you color, graphics, rota-

tion, trees and overlays. PSTricks puts the icing (PostScript) on your

cake (TEX)!

To install PSTricks, follow the instructions in the file read-me.pst that

comes with the PSTricks package. Even if PSTricks has already been

installed for you, give read-me.pst a look over.

This User’s Guide verges on being a reference manual, meaning that it is

not designed to be read linearly. Here is a recommended strategy: Finish

reading this brief overview of the features in PSTricks. Then thumb

through the entire User’s Guide to get your own overview. Return to

Part I (Essentials) and read it carefully. Refer to the remaining sections

as the need arises.

When you cannot figure out how to do something or when trouble arises,

check out the appendices (Help). You just might be lucky enough to

find a solution. There is also a LaTEX file samples.pst of samples that is

distributed with PSTricks. Look to this file for further inspiration.

This documentation is written with LaTEX. Some examples use LaTEX

specific constructs and some don’t. However, there is nothing LaTEX

specific about any of the macros, nor is there anything that does not work

with LaTEX. This package has been tested with Plain TEX, LaTEX, AMS-

LaTEXand AMSTEX, and should work with other TEX macro packages

as well.

The main macro file is pstricks.tex/pstricks.sty. Each of the PSTricks
pstricks macro files comes with a .tex extension and a .sty extension; these are

equivalent, but the .sty extension means that you can include the file

name as a LaTEX document style option.

There are numerous supplementary macro files. A file, like the one

above and the left, is used in this User’s Guide to remind you that you

must input a file before using the macros it contains.

For most PSTricks macros, even if you misuse them, you will not get

PostScript errors in the output. However, it is recommended that you

resolve any TEX errors before attempting to print your document. A

few PSTricks macros pass on PostScript errors without warning. Use

Welcome to PSTricks 1

these with care, especially if you are using a networked printer, because

PostScript errors can cause a printer to bomb. Such macros are pointed

out in strong terms, using a warning like this one:

PS Warning: Use macros that do not check for PostScript

errors with care. PostScript errors can cause a printer to

bomb!

Keep in mind the following typographical conventions in this User’s

Guide.

• All literal input characters, i.e., those that should appear verbatim

in your input file, appear in upright Helvetica and Helvetica-Bold

fonts.

• Meta arguments, for which you are supposed to substitute a value

(e.g., angle) appear in slanted Helvetica-Oblique and Helvetica-

BoldOblique fonts.

• The main entry for a macro or parameter that states its syntax

appears in a large bold font, except for the optional arguments,

which are in medium weight. This is how you can recognize the

optional arguments.

• References to PSTricks commands and parameters within para-

graphs are set in Helvetica-Bold.

Welcome to PSTricks 2

I The Essentials

1 Arguments and delimiters

Here is some nitty-gritty about arguments and delimiters that is really

important to know.

The PSTricks macros use the following delimiters:

Curly braces {arg}

Brackets (only for optional arguments) [arg]

Parentheses and commas for coordinates (x,y)

= and , for parameters par1=val1, …

Spaces and commas are also used as delimiters within arguments, but

in this case the argument is expanded before looking for the delimiters.

Always use a period rather than a comma to denote the decimal point,

so that PSTricks doesn’t mistake the comma for a delimiter.

The easiest mistake to make with the PSTricks macros is to mess up the

delimiters. This may generate complaints from TEX or PSTricks about

bad arguments, or other unilluminating errors such as the following:

! Use of \get@coor doesn’t match its definition.

! Paragraph ended before \pst@addcoor was complete.

! Forbidden control sequence found while scanning use of \check@arrow.

! File ended while scanning use of \lput.

Delimiters are generally the first thing to check when you get errors with

a PSTricks macro.

Since PSTricks macros can have many arguments, it is useful to know

that you can leave a space or new line between any arguments, except

between arguments enclosed in curly braces. If you need to insert a

new line between arguments enclosed in curly braces, put a comment

character % at the end of the line.

The Essentials 3

As a general rule, the first non-space character after a PSTricks macro

should not be a [or (. Otherwise, PSTricks might think that the [or (is

actually part of the macro. You can always get around this by inserting

a pair {} of braces somewhere between the macro and the [or (.

2 Color

The grayscales

black, darkgray, gray, lightgray, and white,

and the colors

red, green, blue, cyan, magenta, and yellow

are predefined in PSTricks.

This means that these names can be used with the graphics objects that

are described in later sections. This also means that the command \gray

(or \red, etc.) can be used much like \rm or \tt, as in

{\gray This stuff should be gray.}

The commands \gray, \red, etc. can be nested like the font commands

as well. There are a few important ways in which the color commands

differ from the font commands:

1. The color commands can be used in and out of math mode (there

are no restrictions, other than proper TEX grouping).

2. The color commands affect whatever is in their scope (e.g., lines),

not simply characters.

3. The scope of the color commands does not extend across pages.

4. The color commands are not as robust as font commands when

used inside box macros. See page 89 for details. You can avoid

most problems by explicitly grouping color commands (e.g., en-

closing the scope in braces {}) whenever these are in the argument

of another command.1

1However, this is not necessary with the PSTricks LR-box commands, expect when

\psverbboxtrue is in effect. See Section A.

Color 4

You can define or redefine additional colors and grayscales with the

following commands. In each case, numi is a number between 0 and 1.

Spaces are used as delimiters—don’t add any extraneous spaces in the

arguments.

\newgray{color}{num}

num is the gray scale specification, to be set by PostScript’s setgray

operator. 0 is black and 1 is white. For example:

\newgray{darkgray}{.25}

\newrgbcolor{color}{num1 num2 num3}

num1 num2 num3 is a red-green-blue specification, to be set by

PostScript’s setrgbcolor operator. For example,

\newrgbcolor{green}{0 1 0}

\newhsbcolor{color}{num1 num2 num3}

num1 num2 num3 is an hue-saturation-brightness specification,

to be set by PostScript’s sethsbcolor operator. For example,

\newhsbcolor{mycolor}{.3 .7 .9}

\newcmykcolor{color}{num1 num2 num3 num4}

num1 num2 num3 num4 is a cyan-magenta-yellow-black speci-

fication, to be set by PostScript’s newcmykcolor operator. For

example,

\newcmykcolor{hercolor}{.5 1 0 .5}

For defining new colors, the rbg model is a sure thing. hsb is not

recommended. cmyk is not supported by all Level 1 implementations of

PostScript, although it is best for color printing. For more information on

color models and color specifications, consult the PostScript Language

Reference Manual, 2nd Edition (Red Book), and a color guide.

Driver notes: The command \pstVerb must be defined.

3 Setting graphics parameters

PSTricks uses a key-value system of graphics parameters to customize

the macros that generate graphics (e.g., lines and circles), or graphics

combined with text (e.g., framed boxes). You can change the default

values of parameters with the command \psset, as in

Setting graphics parameters 5

\psset{fillcolor=yellow}

\psset{linecolor=blue,framearc=.3,dash=3pt 6pt}

The general syntax is:

\psset{par1=value1,par2=value2,…}

As illustrated in the examples above, spaces are used as delimiters for

some of the values. Additional spaces are allowed only following the

comma that separates par=value pairs (which is thus a good place to start

a new line if there are many parameter changes). E.g., the first example

is acceptable, but the second is not:

\psset{fillcolor=yellow, linecolor=blue}

\psset{fillcolor= yellow,linecolor =blue }

The parameters are described throughout this User’s Guide, as they are

needed.

Nearly every macro that makes use of graphics parameters allows you

to include changes as an optional first argument, enclosed in square

brackets. For example,

\psline[linecolor=green,linestyle=dotted](8,7)

draws a dotted, green line. It is roughly equivalent to

{\psset{linecolor=green,linestyle=dotted}\psline(8,7)}

For many parameters, PSTricks processes the value and stores it in a

peculiar form, ready for PostScript consumption. For others, PSTricks

stores the value in a form that you would expect. In the latter case, this

User’s Guide will mention the name of the command where the value

is stored. This is so that you can use the value to set other parameters.

E.g.,

\psset{linecolor=\psfillcolor,doublesep=.5\pslinewidth}

However, even for these parameters, PSTricks may do some processing

and error-checking, and you should always set them using \psset or as

optional parameter changes, rather than redefining the command where

the value is stored.

Setting graphics parameters 6

4 Dimensions, coordinates and angles

Whenever an argument of a PSTricks macro is a dimension, the unit is

optional. The default unit is set by the

unit=dim Default: 1cm

parameter. For example, with the default value of 1cm, the following

are equivalent:

\psset{linewidth=.5cm}

\psset{linewidth=.5}

By never explicitly giving units, you can scale graphics by changing the

value of unit.

You can use the default coordinate when setting non-PSTricks dimen-

sions as well, using the commands

\pssetlength{cmd}{dim}

\psaddtolength{cmd}{dim}

where cmd is a dimension register (in LaTEX parlance, a “length”), and

dim is a length with optional unit. These are analogous to LaTEX’s

\setlength and \addtolength.

Coordinate pairs have the form (x,y). The origin of the coordinate

system is at TEX’s currentpoint. The command \SpecialCoor lets you use

polar coordinates, in the form (r ;a), where r is the radius (a dimension)

and a is the angle (see below). You can still use Cartesian coordinates.

For a complete description of \SpecialCoor, see Section 34.

The unit parameter actually sets the following three parameters:

xunit=dim Default: 1cm

yunit=dim Default: 1cm

runit=dim Default: 1cm

These are the default units for x-coordinates, y-coordinates, and all

other coordinates, respectively. By setting these independently, you can

scale the x and y dimensions in Cartesian coordinate unevenly. After

changing yunit to 1pt, the two \psline’s below are equivalent:

\psset{yunit=1pt}

\psline(0cm,20pt)(5cm,80pt)

\psline(0,20)(5,80)

Dimensions, coordinates and angles 7

The values of the runit, xunit and yunit parameters are stored in the

dimension registers \psunit(also \psrunit), \psxunit and \psyunit.

Angles, in polar coordinates and other arguments, should be a number

giving the angle in degrees, by default. You can also change the units

used for angles with the command

\degrees[num]

num should be the number of units in a circle. For example, you might

use

\degrees[100]

to make a pie chart when you know the shares in percentages. \degrees

without the argument is the same as

\degrees[360]

The command

\radians

is short for

\degrees[6.28319]

\SpecialCoor lets you specify angles in other ways as well.

5 Basic graphics parameters

The width and color of lines is set by the parameters:

linewidth=dim Default: .8pt

linecolor=color Default: black

The linewidth is stored in the dimension register \pslinewidth, and the

linecolor is stored in the command \pslinecolor.

The regions delimited by open and closed curves can be filled, as deter-

mined by the parameters:

Basic graphics parameters 8

fillstyle=style

fillcolor=color

When fillstyle=none, the regions are not filled. When fillstyle=solid, the

regions are filled with fillcolor. Other fillstyle’s are described in Section

14.

The graphics objects all have a starred version (e.g., \psframe*) which

draws a solid object whose color is linecolor. For example,

\psellipse*(1,.5)(1,.5)

Open curves can have arrows, according to the

arrows=arrows

parameter. If arrows=-, you get no arrows. If arrows=<->, you get

arrows on both ends of the curve. You can also set arrows=-> and

arrows=<-, if you just want an arrow on the end or beginning of the

curve, respectively. With the open curves, you can also specify the

arrows as an optional argument enclosed in {} brackets. This should

come after the optional parameters argument. E.g.,

\psline[linewidth=2pt]{<-}(2,1)

Other arrow styles are described in Section 15

If you set the

showpoints=true/false Default: false

parameter to true, then most of the graphics objects will put dots at

the appropriate coordinates or control points of the object.2 Section 9

describes how to change the dot style.

2The parameter value is stored in the conditional \ifshowpoints.

Basic graphics parameters 9

II Basic graphics objects

6 Lines and polygons

The objects in this section also use the following parameters:

linearc=dim Default: 0pt

The radius of arcs drawn at the corners of lines by the \psline and

\pspolygon graphics objects. dim should be positive.

framearc=num Default: 0

In the \psframe and the related box framing macros, the radius

of rounded corners is set, by default, to one-half num times the

width or height of the frame, whichever is less. num should be

between 0 and 1.

cornersize=relative/absolute Default: relative

If cornersize is relative, then the framearc parameter determines

the radius of the rounded corners for \psframe, as described above

(and hence the radius depends on the size of the frame). If

cornersize is absolute, then the linearc parameter determines the

radius of the rounded corners for \psframe (and hence the radius

is of constant size).

Now here are the lines and polygons:

\psline*[par]{arrows}(x0,y0)(x1,y1)…(xn,yn)

This draws a line through the list of coordinates. For example:

0 1 2 3 4

0

1

2

\psline[linewidth=2pt,linearc=.25]{->}(4,2)(0,1)(2,0)

\qline(coor0)(coor1)

Basic graphics objects 10

This is a streamlined version of \psline that does not pay attention

to the arrows parameter, and that can only draw a single line

segment. Note that both coordinates are obligatory, and there is

no optional argument for setting parameters (use \psset if you

need to change the linewidth, or whatever). For example:

0 1 2

0

1

\qline(0,0)(2,1)

\pspolygon*[par](x0,y0)(x1,y1)(x2,y2)…(xn,yn)

This is similar to \psline, but it draws a closed path. For example:

0 1 2 3 4

0

1

2

\pspolygon[linewidth=1.5pt](0,2)(1,2)

\pspolygon*[linearc=.2,linecolor=darkgray](1,0)(1,2)(4,0)(4,2)

\psframe*[par](x0,y0)(x1,y1)

\psframe draws a rectangle with opposing corners (x0,y0) and

(x1,y1). For example:

0 1 2 3 4

0

1

2

\psframe[linewidth=2pt,framearc=.3,fillstyle=solid,

fillcolor=lightgray](4,2)

\psframe*[linecolor=white](1,.5)(2,1.5)

7 Arcs, circles and ellipses

\pscircle*[par](x0,y0){radius}

This draws a circle whose center is at (x0,y0) and that has radius

radius. For example:

-1 0 1 2

-1

0

1

2

\pscircle[linewidth=2pt](.5,.5){1.5}

\qdisk(coor){radius}

This is a streamlined version of \pscircle*. Note that the two

arguments are obligatory and there is no parameters arguments.

To change the color of the disks, you have to use \psset:

Arcs, circles and ellipses 11

\psset{linecolor=gray}

\qdisk(2,3){4pt}

\pswedge*[par](x0,y0){radius}{angle1}{angle2}

This draws a wedge whose center is at (x0,y0), that has radius

radius, and that extends counterclockwise from angle1 to angle2.

The angles must be specified in degrees. For example:

0 1 2

0

1

2

\pswedge[linecolor=gray,linewidth=2pt,fillstyle=solid]{2}{0}{70}

\psellipse*[par](x0,y0)(x1,y1)

(x0,y0) is the center of the ellipse, and x1 and y1 are the horizontal

and vertical radii, respectively. For example:

-1 0 1 2

-1

0

1

\psellipse[fillcolor=lightgray](.5,0)(1.5,1)

\psarc*[par]{arrows}(x ,y){radius}{angleA}{angleB}

This draws an arc from angleA to angleB, going counter clockwise,

for a circle of radius radius and centered at (x,y). You must include

either the arrows argument or the (x,y) argument. For example:

0 1 2 3

0

1

2

\psarc*[showpoints=true](1.5,1.5){1.5}{215}{0}

See how showpoints=true draws a dashed line from the center to

the arc; this is useful when composing pictures.

\psarc also uses the parameters:

arcsepA=dim Default: 0pt

angleA is adjusted so that the arc would just touch a line of

width dim that extended from the center of the arc in the

direction of angleA.

arcsepB=dim Default: 0pt

This is like arcsepA, but angleB is adjusted.

Arcs, circles and ellipses 12

arcsep=dim Default: 0

This just sets both arcsepA and arcsepB.

These parameters make it easy to draw two intersecting lines and

then use \psarc with arrows to indicate the angle between them.

For example:

0 1 2 3 4

0

1

2

3

\SpecialCoor

\psline[linewidth=2pt](4;50)(0,0)(4;10)

\psarc[arcsepB=2pt]{->}{3}{10}{50}

\psarcn*[par]{arrows}(x ,y){radius}{angleA}{angleB}

This is like \psarc, but the arc is drawn clockwise. You can

achieve the same effect using \psarc by switching angleA and

angleB and the arrows.3

8 Curves

\psbezier*[par]{arrows}(x0,y0)(x1,y1)(x2,y2)(x3,y3)

\psbezier draws a bezier curve with the four control points. The

curve starts at the first coordinate, tangent to the line connecting

to the second coordinate. It ends at the last coordinate, tangent to

the line connecting to the third coordinate. The second and third

coordinates, in addition to determining the tangency of the curve

at the endpoints, also “pull” the curve towards themselves. For

example:

\psbezier[linewidth=2pt,showpoints=true]{->}(0,0)(1,4)(2,1)(4,3.5)

3However, with \pscustom graphics object, described in Part IV, \psarcn is not

redundant.

Curves 13

showpoints=true puts dots in all the control points, and connects

them by dashed lines, which is useful when adjusting your bezier

curve.

\parabola*[par]{arrows}(x0,y0)(x1,y1)

Starting at (x0,y0), \parabola draws the parabola that passes

through (x0,y0) and whose maximum or minimum is (x1,y1). For

example:

0 1 2 3 4

0

1

2

3

\parabola*(1,1)(2,3)

\psset{xunit=.01}

\parabola{<->}(400,3)(200,0)

The next three graphics objects interpolate an open or closed curve

through the given points. The curve at each interior point is perpendic-

ular to the line bisecting the angle ABC, where B is the interior point,

and A and C are the neighboring points. Scaling the coordinates does

not cause the curve to scale proportionately.

The curvature is controlled by the following parameter:

curvature=num1 num2 num3 Default: 1 .1 0

You have to just play around with this parameter to get what

you want. Individual values outside the range -1 to 1 are either

ignored or are for entertainment only. Below is an explanation of

what each number does. A, B and C refer to three consecutive

points.

Lower values of num1 make the curve tighter.

Lower values of num2 tighten the curve where the angle ABC is

greater than 45 degrees, and loosen the curve elsewhere.

num3 determines the slope at each point. If num3=0, then the

curve is perpendicular at B to the bisection of ABC. If num3=-1,

then the curve at B is parallel to the line AC. With this value (and

only this value), scaling the coordinates causes the curve to scale

proportionately. However, positive values can look better with

irregularly spaced coordinates. Values less than -1 or greater than

2 are converted to -1 and 2, respectively.

Here are the three curve interpolation macros:

Curves 14

\pscurve*[par]{arrows}(x1,y1)…(xn,yn)

This interpolates an open curve through the points. For example:

0 1 2 3 4

0

1

2

\pscurve[showpoints=true]{<->}(0,1.3)(0.7,1.8)

(3.3,0.5)(4,1.6)(0.4,0.4)

Note the use of showpoints=true to see the points. This is helpful

when constructing a curve.

\psecurve*[par]{arrows}(x1,y1)…(xn,yn)]

This is like \pscurve, but the curve is not extended to the first and

last points. This gets around the problem of trying to determine

how the curve should join the first and last points. The e has

something to do with “endpoints”. For example:

0 1 2 3 4

0

1

2

3

4

\psecurve[showpoints=true](.125,8)(.25,4)(.5,2)

(1,1)(2,.5)(4,.25)(8,.125)

\psccurve*[par]{arrows}(x1,y1)…(xn,yn)

This interpolates a closed curve through the points. c stands for

“closed”. For example:

0 1 2 3 4

0

1

\psccurve[showpoints=true]

(.5,0)(3.5,1)(3.5,0)(.5,1)

9 Dots

The graphics object

\psdots*[par](x1,y1)(x2,y2)…(xn,yn)

Dots 15

puts a dot at each coordinate. What a “dot” is depends on the value of

the

dotstyle=style Default: *

parameter. This also determines the dots you get when showpoints=true.

The dot styles are also pretty intuitive:

Style Example

*

o

+

triangle

triangle*

Style Example

square

square*

pentagon

pentagon*

|

As with arrows, there is a parameter for scaling the dots:

dotscale=num1 num2 Default: 1

The dots are scaled horizontally by num1 and vertically by num2. If

you only include one number, the arrows are scaled the same in both

directions.

There is also a parameter for rotating the dots:

dotangle=angle Default: 0

Thus, e.g., by setting dotangle=45, the + dotstyle gives you an x, and

the square dotstyle gives you a diamond. Note that the dots are first

scaled and then rotated.

The unscaled size of the |̈ dot style is controlled by the tbarsize parameter,

and the unscaled size of the remaining dot styles is controlled by the

dotsize. These are described in Section 15. The radius as determined

by the value of dotsize is the radius of solid or open circles. The other

types of dots are of similar size.4

The dot sizes are allowed to depend on the linewidth because of the

showpoints parameter . However, you can set the dot sizes to an absolute

dimension by setting the second number in the dotsize parameter to 0.

E.g.,

\psset{dotsize=3pt 0}

sets the size of the dots to 3pt, independent of the value of linewidth.

4The polygons are sized to have the same area as the circles. A diamond is just a

rotated square.

Dots 16

10 Grids

PSTricks has a powerful macro for making grids and graph paper:

\psgrid(x0,y0)(x1,y1)(x2,y2)

\psgrid draws a grid with opposing corners (x1,y1) and (x2,y2). The

intervals are numbered, with the numbers positioned at x0 and y0. The

coordinates are always interpreted as Cartesian coordinates. For exam-

ple:

-1 0 1 2 3

-1

0

1

2

\psgrid(0,0)(-1,-1)(3,2)

(Note that the coordinates and label positioning work the same as with

\psaxes.)

The main grid divisions occur on multiples of xunit and yunit. Subdivi-

sions are allowed as well. Generally, the coordinates would be given as

integers, without units.

If the (x0,y0) coordinate is omitted, (x1,y1) is used. The default for

(x1,y1) is (0,0). If you don’t give any coordinates at all, then the coordi-

nates of the current \pspicture environment are used or a 10x10 grid is

drawn. Thus, you can include a \psgrid command without coordinates

in a \pspicture environment to get a grid that will help you position

objects in the picture.

The main grid divisions are numbered, with the numbers drawn next to

the vertical line at x0 (away from x2) and next to the horizontal line at

x1 (away from y2). (x1,y1) can be any corner of the grid, as long as

(x2,y2) is the opposing corner, you can position the labels on any side

you want. For example, compare

0 1 2 3 4

0

1

\psgrid(0,0)(4,1)

and
43210

1

0

\psgrid(4,1)(0,0)

Grids 17

The following parameters apply only to \psgrid:

gridwidth=dim Default: .8pt

The width of grid lines.

gridcolor=color Default: black

The color of grid lines.

griddots=num Default: 0

If num is positive, the grid lines are dotted, with num dots per

division.

gridlabels=dim Default: 10pt

The size of the numbers used to mark the grid.

gridlabelcolor=color Default: black

The color of the grid numbers.

subgriddiv=int Default: 5

The number of grid subdivisions.

subgridwidth=dim Default: .4pt

The width of subgrid lines.

subgridcolor=color Default: gray

The color of subgrid lines.

subgriddots=num Default: 0

Like griddots, but for subdivisions.

Here is a familiar looking grid which illustrates some of the parameters:

-1 0 1 2 3

-1

0

1

\psgrid[subgriddiv=1,griddots=10,gridlabels=7pt](-1,-1)(3,1)

Note that the values of xunit and yunit are important parameters for

\psgrid, because they determine the spacing of the divisions. E.g., if the

value of these is 1pt, and then you type

\psgrid(0,0)(10in,10in)

Grids 18

you will get a grid with 723 main divisions and 3615 subdivisions!

(Actually, \psgrid allows at most 500 divisions or subdivisions, to limit

the damage done by this kind of mistake.) Probably you want to set unit

to .5in or 1in, as in

\psgrid[unit=.5in](0,0)(20,20)

11 Plots

The plotting commands described in this part are defined in pst-plot.tex/pst-
pst-plot plot.sty, which you must load first.

The \psdots, \psline, \pspolygon, \pscurve, \psecurve and \psccurve

graphics objects let you plot data in a variety of ways. However, first

you have to generate the data and enter it as coordinate pairs (x,y). The

plotting macros in this section give you other ways to get and use the

data. (Section 26 tells you how to generate axes.)

To parameter

plotstyle=style Default: line

determines what kind of plot you get. Valid styles are dots, line, polygon,

curve, ecurve, ccurve. E.g., if the plotstyle is polygon, then the macro

becomes a variant of the \pspolygon object.

You can use arrows with the plot styles that are open curves, but there

is no optional argument for specifying the arrows. You have to use the

arrows parameter instead.

PS

Warning: No PostScript error checking is provided for

the data arguments. Read Appendix C before including

PostScript code in the arguments.

There are system-dependent limits on the amount of data

TEX and PostScript can handle. You are much less likely to

exceed the PostScript limits when you use the line, polygon

or dots plot style, with showpoints=false, linearc=0pt, and

no arrows.

Note that the lists of data generated or used by the plot commands cannot

contain units. The values of \psxunit and \psyunit are used as the unit.

Plots 19

\fileplot*[par]{file}

\plotfile is the simplest of the plotting functions to use. You just

need a file that contains a list of coordinates (without units), such

as generated by Mathematica or other mathematical packages.

The data can be delimited by curly braces { }, parentheses (),

commas, and/or white space. Bracketing all the data with square

brackets [] will significantly speed up the rate at which the data is

read, but there are system-dependent limits on how much data TEX

can read like this in one chunk. (The [must go at the beginning

of a line.) The file should not contain anything else (not even

\endinput), except for comments marked with %.

\plotfile only recognizes the line, polygon and dots plot styles,

and it ignores the arrows, linearc and showpoints parameters.

The \listplot command, described below, can also plot data from

file, without these restrictions and with faster TEX processing.

However, you are less likely to exceed PostScript’s memory or

operand stack limits with \plotfile.

If you find that it takes TEX a long time to process your \plot-

file command, you may want to use the \PSTtoEPS command

described on page 80. This will also reduce TEX’s memory re-

quirements.

\dataplot*[par]{commands}

\dataplot is also for plotting lists of data generated by other pro-

grams, but you first have to retrieve the data with one of the

following commands:

\savedata{command}[data]

\readdata{command}{file}

data or the data in file should conform to the rules described above

for the data in \fileplot (with \savedata, the data must be delimited

by [], and with \readdata, bracketing the data with [] speeds things

up). You can concatenate and reuse lists, as in

\readdata{\foo}{foo.data}

\readdata{\bar}{bar.data}

\dataplot{\foo\bar}

\dataplot[origin=(0,1)]{\bar}

The \readdata and \dataplot combination is faster than \fileplot

if you reuse the data. \fileplot uses less of TEX’s memory than

\readdata and \dataplot if you are also use \PSTtoEPS.

Plots 20

